Ультразвуковой контроль (далее УЗК) – один из методов акустического неразрушающего контроля (НК). Впервые он был применен в 30-х годах XX века и за двадцать лет получил самое широкое распространение как метод контроля качества сварных швов цельных деталей. Его длительная популярность объясняется тем, что ультразвук позволяет выявить не только поверхностные, но и подповерхностные дефекты и получать при этом результаты высокой точности. По этой причине его еще называют ультразвуковой дефектоскопией.
Проведение ультразвукового контроля.В основе УЗК использование ультразвуковых колебаний. В однородном материале звуковые волны не меняют свою траекторию. Их отражение говорит о присутствии упругих сред с разным удельным акустическим сопротивлением. При УЗК в объект излучают акустические колебания, а отраженные волны фиксируют дефектоскопом с пьезоэлектрическим преобразователем. По их амплитуде можно сделать вывод о наличии отклонений и узнать их основные параметры (тип, форму и размеры). УЗК не определяет предельно точные параметры дефекта, поэтому для сравнения необходимо эталонное изделие. Фактические размеры отклонения почти всегда больше, чем получаемые путем расчета. Больше всего УЗК востребован в различных отраслях промышленности для контроля прочности стыковых сварных соединений/ стыков и склейки разных по структуре частей изделия и металлов. Кроме этого, он достаточно часто используется в процессе строительства или реконструкции жилых домов и зданий коммерческого назначения.
Методы ультразвукового контроляУЗК является надежным и эффективным способом обнаружить целый ряд дефектов.
При деформации твердого материала, находящегося в состоянии напряжения, генерируются и распространяются упругие колебания. Именно это явление положено в основу акустико-эмиссионного контроля, призванного обнаружить слабые места в трубопроводах и теплообменниках, сосудах и резервуарах, колоннах и реакторах, в сварных швах, деталях и узлах каких-либо механизмов. Контроль акустической эмиссией может проводиться только в том случае, если проверяемый объект находится под нагрузкой. Поэтому для получения результатов проверки на него оказывается воздействие физической силой, полем низких или высоких температур, повышенным давлением. Выбор нагрузки зависит от особенностей объекта, а также условий его эксплуатации.
Дефекты, которые выявляет акустическая эмиссия.
Акустическая эмиссия – это пассивный метод неразрушающего контроля. Главная цель ее использования – это выявление трещин, разломов, расслоений, коррозийных процессов. При этом она помогает находить не статические, а развивающие дефекты. Именно они являются наиболее опасными, так как грозят серьезными неприятностями в самом ближайшем будущем. В отличие от других методов НК, контроль акустической эмиссией не требует применения каких-либо внешних источников сигнала. Он предполагает улавливание упругих колебаний, генерируемых самим проверяемым объектом, благодаря чему обеспечивается высокая точность обнаружения деформаций. Приборы для акустико-эмиссионного контроля включают в себя два преобразователя и комплект устройств для получения информации с датчиков, ее обработки и вывода на периферийное оборудование, каждый из которых регистрирует время улавливания сигнала. Сам контроль осуществляется следующим образом:Метод контроля акустической эмиссией применяется в основном для определения точного местонахождения дефекта. В дальнейшем требуется использование других методов НК, чтобы получить максимально точные результаты.
Основные сферы применения акустико-эмиссионного контроля – это:Одно из главных требований к приборам акустической эмиссии – это отсеивание ложных сигналов.
Основу всех методов МК составляет обнаружение локальных искажений магнитного поля, которые вызываются повреждениями, присутствующими в намагниченном изделии (объекте контроля). Магнитная проницаемость несплошности (трещины) гораздо ниже, чем у объекта в целом. Если она есть, то магнитные силовые линии искривляются. Образуются так называемые поля рассеяния, или поля дефекта. Они фиксируются различными магнитными преобразователями (некоторые виды используемых преобразователей дают название методу контроля). По форме и амплитуде магнитных линий можно понять параметры и глубину расположения дефекта. После завершения исследования объект размагничивается с помощью соленоида.
Магнитопорошковый: в качестве индикатора магнитных линий используется магнитный порошок. Этот метод применяется чаще всего. Он универсален, отличается высокой чувствительностью и простотой выполнения. С помощью него можно обнаружить поверхностные и подповерхностные (на глубине до 2 мм) дефекты.
Также проводится магнитный контроль сварных швов и соединений. Магнитный контроль позволяет выявить даже самые мелкие дефекты изделий из ферромагнитных материалов на ранней стадии и своевременно устранить их.
Капиллярный контроль (проникающими веществами, течеискание) относится к наиболее сенситивным методам дефектоскопии. Базирующийся на проникновении контрастных веществ (пенетрантов) в поверхностные слои исследуемого объекта, он позволяет выявлять в них малейшие неровности, шероховатости и трещины. Под действием давления и последующей обработки пенетрантов проявителем уровень свето- и цветоконтрастности поврежденного участка увеличивается по сравнению с полноценной поверхностью. Полученный в результате индикаторный рисунок позволяет определить не только количественный, но и качественный состав повреждений.
Сферы применения капиллярного контроля.Капиллярные методы выявляют поверхностные и сквозные микродефекты, недоступные для визуального контроля. Их применение дает возможность отслеживавать объекты любых размеров и форм, изготовленных из самых разных материалов, включая черные и цветные металлы, стекло, керамику и пластик. Очень часто капиллярная дефектоскопия является единственным доступным методом контроля конструкций и элементов из неметаллических, немагнитных, композитных и прочих многообещающих материалов. Помимо обнаружения и идентификации, контроль проникающими веществами отражает сведения о параметрах повреждения, что упрощает понимание причин его возникновения.
Аэрозольные баллончики для размещения пенетрантов сделали контроль проникающими веществами компактным и портативным. Применение метода больше не ограничивается производственными и лабораторными помещениями. Теперь он активно используется в полевых условиях для диагностики фактического состояния технически сложных объектов.
Разновидности капиллярного контроля.В зависимости от способа выполнения капиллярный контроль может быть: основным - осуществляется посредством нанесения проникающих веществ; комбинированным - использует одновременно несколько щадящих методов.
Основные способы капиллярного контроля подразделяются на две группы:Пониженные температуры увеличивают время проникновения пенетранта в микротрещины и вероятность образования конденсата на поверхности контролируемого участка, что усложняет технологический процесс.
Метод течеискания контролирует сквозные повреждения. Его особенность заключается в нанесении проникающего вещества и проявителя, как на внешние, так и внутренние поверхности исследуемой конструкции.
Результаты визуального или оптического осмотра, допускающего применение луп и очков с увеличительными линзами, анализируются и протоколируются. По завершению контрольных мероприятий объект очищается водой или растворителем, обдувкой песком или другим абразивом.
Вибрационный контроль (ВК) или вибродиагностика – одна из эффективных разновидностей неразрушающего контроля. Она базируется на мониторинге и анализе ключевых показателей вибрации (колебаний), которую создает функционирующий исследуемый объект. ВК позволяет контролировать фактическое состояние и своевременно выявлять отклонения в работе насосных агрегатов, вентиляторов, систем охлаждения, отопления и другого промышленного оборудования.
Дефекты механических, электромагнитных и прочих систем, как правило, отражаются на вибрации, изменяющей под их влиянием ряд своих параметров. Измерение показателей вибрации позволяет получить сведения о техническом состоянии объекта, его неисправностях и остаточном потенциале.
Принцип действия вибрационной дефектоскопии.Изменения в любой системе возникают по причине внутреннего или наружного воздействия, порождаемого в зависимости от характера рабочего процесса статическими, динамическими или вибрационными нагрузками. Возбудители вибрации и шумов, как правило, имеют механическое, магнитное или аэродинамическое происхождение. Механические колебания (вибрации) генерируют несбалансированные вращающиеся опоры, зубчатые передачи, щеточно-коллекторные узлы и другие детали. Их дисбаланс вызывает вибрации с кратными частотами.
Для установления причины вибраций проводят частотный анализ. Задействованные в нем устройства, помогают установить все частотные составляющие, вызывающие колебания машин и оборудования, тремя способами.
Наиболее важными составляющими считаются гармоники. Совпадая с частотами определенных элементов, они могут увеличиваться и образовывать источник акустического шума, передающийся другим механизмам.
С помощью тепловых методов контроля отслеживают теплопроводность, температурный режим
и выполняют расчет тепловых потоков объекта, условно разделяя методы на два вида:
активный и пассивный контроль.
Пассивная разновидность не требует внешнего термического воздействия, поскольку
тепловое поле в контролируемом объекте возникает в процессе его производства или
эксплуатации. Это один из самых популярных методов ТК, широко применяющийся в
различных промышленных отраслях.
Активно используются при возведении и последующей эксплуатации зданий для определения внутренних и наружных температур, а также термического сопротивления проверяемого объекта. Данные с этих электронных приборов переносятся на ПК для последующей автоматической обработки, формирования отчетов и архивации.
Визуально-измерительный контроль – самая практичная разновидность методов НК.
Для обнаружения других дефектов, таких как непровары и забоины, расслоения и осевые смещения, надломы и поры, открытые раковины и трещины, повреждения, вызванные коррозией, необходимо производить оптический контроль. С этой целью используются соответствующие инструменты и приборы – лупа, микроскоп и прочие.
Как уже упоминалось выше, оптический метод контроля – это часть ВИК, которая подразумевает использование специальных приборов для выявления глубинных дефектов.
Все оборудование, которое применяется при визуально-измерительном контроле качества, можно разделить на две большие группы. Первая – это инструменты, с помощью которых и осуществляются измерения дефектов, различных параметров сварных швов.
Данная группа инструментов применяется только в том случае, если при визуальном осмотре были обнаружены какие-либо дефекты, которые нужно исследовать максимально подробно. Чтобы выявить соответствие толщины стенок изделия требуемым параметрам, используется оборудование, предназначенное для физического контроля. Это толщиномеры и ультразвуковые дефектоскопы. Существует целый ряд способов исследования сварного шва в труднодоступных местах. К примеру, для измерения углублений между валиками, а также определения чешуйчатости разрешается снимать слепки из воска, пластилина, иных материалов.
Визуально-измерительный метод неразрушающего контроля позволяет не только оценить качество сварного шва, но и выявить грубые нарушения производственного процесса, спрогнозировать места разрушения детали, ориентируясь на имеющиеся дефекты, а также сделать выводы о безопасности и соответствии стандартам применяемых технологий изготовления либо ремонта конструкций.